skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Ke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin‐binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet‐like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound‐triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin‐sensitive PLPs (TS‐PLPs), we incorporated a thrombin‐cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin‐prompted shape change ability was confirmed, the TS‐PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS‐PLPs exhibit a wound‐triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma. 
    more » « less
  2. Abstract Precision healthcare relies upon ubiquitous biofeedback to optimize therapy individually for nuanced and dynamic needs. However, grand challenges reside in the lack of soft, highly personalizable monitors that are scalable in manufacturing and reversibly interchangeable upon the evolution of needs. Herein, a customizable soft wearable platform is presented that can seamlessly integrate diverse functional modules, including physical and biochemical sensors, stimulators, and energy storage devices, tailored to various health monitoring scenarios, while can self‐repair after certain mechanical damage. The platform supports versatile physiological sensing and therapeutic intervention due to its compatibility with wide‐ranging functional nanomaterials. A bilayer microporous foam embedded in the gel improves sweat management for comfortable and reliable on‐body biomarker monitoring. Furthermore, flexible self‐healing zinc‐air batteries using ion gel electrolytes provide opportunities for self‐powered, closed‐loop systems. On‐body demonstrations validate the platform's capability to monitor physiological and metabolic states under real‐world conditions. This work provides a scalable and adaptable materials‐based solution for real‐time personalized health monitoring, advancing wearable bioelectronics to meet evolving healthcare demands. 
    more » « less